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We examine the axisymmetric problem of the torsion of an elastic space, weak- 
ened by a conical crack, under the assumption that on the boundaries of the 
crack the tangential displacements or the shear stresses are prescribed. The 
solution is obtained by the application of dual integral equations related to the 

Mellin integral transform, similar to those studied in Cl]. The result is repre- 
sented in quadratures in terms of auxiliary functions which are solutions of a 
Fredholm equation of the second kind. As an example, we solve the problem 
of torsion of the space with a rigid conical inclusion. 

1. Formulation of the problem. We consider the axisymmetric problem 
of the torsion of an elastic space, weakened by a conical crark. Let r, a, q be the sys- 

tem of spherical coordinates, whose origin 
coincides with the vertex of the crack, while 

the z -axis is the axis of symmetry (Fig. 1). 
For this choice of coordinates, the problem 

under consideration reduces to the determi- 

nation of the only nonzero component uw= 
u (r, 0) of the displacement vector, satisfy- 

ing the equation 

Fig. 1 Au- ’ rL sin26 z 
0 (1.1) 

The components of the stress tensor can be expressed in terms of u with the relations 

2&&[$(*)]*, z,, =p [E-f] (1.2) 

where P is the shear modulus. The desired function must satisfy boundary conditions 

of one of the following two types (for given tangential displacements or shear stresses): 

11 leea = I (4, O,(r<R (1.3) 

Here f (r) and g (r) are specified continuous functions. In addition, the conditions at 
infinity and the conditions of the behavior of the desired function near the vertex of the 
cone must be satisfied 

‘( l’--roo = 0 (r-l), zTg _ G (r”), zg, = 0 (r-l) 
(1.5) 

u la=& r+g = 0 (1); z,+ =O(r-h), O<S<l 
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‘r sp = 0 (r+), o<e<l. (1.6) 

2. The reduction of the probleim to dual integral equations, 
For the solution of the formulated problem we will make use of the method of separation 

of variables and we will seek the solution in the form 

for the case of boundary conditions (1.3) and in the form 

in the case of the boundary conditions (1.4). In these expressions M (z) and N (z) are 
continuous functions, subject to determination, P m (2) is the associated spherical Le- 

gendre function of the first kind. The expressions i2.1) and (2.2) satisfy formally the 
differential equation (1. l), the conditions (1.5) and (1.6) and also the ~n~n~~ eon- 
ditions at the symmetry axis and at the surface Q = a. 

The boundary conditions (I. 3) and (1.4) and the continuity ~q~rernen~ of the nor- 

mal derivative of the function at the crossing of the surface (R < r < ~0, 6 = a) , lead 
us to the dual equations for the determination of the functions M (‘r) and lV (r). These 
equations have the form 

M (r) eeir In ‘f R dz = f (r), r<R (2.31 

in the problem with the prescribed displacements and 

in the problem with prescribed shear stresses. The equations (2.3) and (2.4) belong to 
the class of dual integral equations connected with the Mellin transform, investigated 
in 111. Let us prove that the solution of these equations can be expressed by quadratures 
in terms of auxiliary functions which satisfy Fredholm integral equations of the second 
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kind with symmetric kernels. The latter can be effectively solved and they allow us to 
obtain convenient computational formulas for the components of the stress tensor and 
for other quantities which present interest. 

3. The rolutfon of the durl tntsgrrl aquatfbns. We consider the 
dual integral equations (2.3). We will seek their solution in the form 

Here ‘p (6 is an unknown function, continuous together with its derivative in the interval 
(0, R) and satisfying the condition g, (t) Jfi- + 0 when t -_j 0, while I‘ (z) is the Euler 
gamma function. If we substitute (3.1) into the second of the equations (2.3) and if we 
take into account the known relation 

then it is easy to see that the equation under consideration is identically satisfied. The 

substitution of (3.1) into the remaining equation leads us to a Fredholm inregraI equa- 
tion of the second kind 

Here 

q (I) = 1 (z) -. fm G (15 -II 119 (Y) +, o<s<cQ 
0 

t = ReFx, 8 = Re-“, e-‘J8xcp (Re-“) = \11 (x) 

(3.2) 

This can be easily seen if we perform the computations, similar to those in [Xl, and 

if we make use of the discontinuous integral 

For Eqs. (2.4) we seek tie solution in the form 

In a manner similar to the previous one, we arrive at Eq. (3.2), but here 

m 

s g (Re”‘) edzy 
x (e-2X _ e-zty dy 
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The equation (3.2) belongs to the class which is solvable by the Wiener-Hopf method. 
However, the application of this method to the given equation or to the initial dual equa- 

tions is connected with the factorization of complicated functions and leads to formulas 

which are not very suitable for numerical computations. Therefore, it is more rational 
to apply the iteration method as well as the expansion into a series of powersof a small 

parameter. 

4. The rolution of the problem for the cata of a large apex 
angle of the cone, The method of the rmrll parrmeter, Wecon- 
sider the method of solution of Eq. (3.2). based on the expansion of ctgz a in a power 
series, which leads to relatively simple formulas. The basis of the method is the expan- 
sion formula of the product of spherical functions into series 

sin a P!!$,+iT @OS a) P!$,+i+ (-- cos a) = 
1 

-chanr x 
2mata 

F~~~,~+iz+m)r2C/2-Sz+m) OD 

f” (1 + m) 
2 (_$)k trn -yk x 

k=O 
1 

k+m, ++izfm, -TJ-- iz+m; 2m+-1, m+1; 1 ctgsLa (4.Q 

where aE; is the generalized hypergeometric function. The derivation of this formula 
is given in the Appendix. 

Making use of (4. I), we can represent the kernel in the form 

cc 

G (x) = f 
sin aPI,,+ i7 @OS a) PYll+ it (- cos a) 

[Y!i,*+ir iOIl2 

CO? ZXdT = G, (xf &g2ka 
k=l 

cf4 

G, @) = (-- 1)” 
(m + Wk “: @k @) [‘?,,+i+ to)]* 

kl s 2*nz (ml)3 
cos zxdr 

( 1 1 
SF2 2- k-l-m, ++ir+m, y-it-+-m; 2m+1, m+i; i 

) 

The series (4.2) converges rapidly for small values of et@ a, i.e. for a close to I/% sr 
(cone with large apex angle). The coefficients of the series can be obtained by numer- 

ical integration and the values of the functions @k (7) are determined by the formulas 

00=2m, f_O1= 8p P/4 + %m + '/at@ P (8/a- l/zm + l/fiz) 
r” (l/o 

_I_ _ 2zz 
- Vzm + 112i?) P (l/4 + %m + %tz) + 2 - 

2m~ 
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The expansion of the kernel G (z) of Eq. (3.2) in the problem with prescribed displace- 
ments and in the problem with prescribed shear stresses can be obtained from (4.1) as 
particular cases if we set rn = 1, m = 2, respectively. 

If we seek the solution of the considered integral equations in the form 

zi’ (2) = 5 *k (5) &JZke (4.4) 
k=O 

then for the determination of the coefficients $k (2) we obtain a series of recursion rela- 
tions 

*o (sj = l(z) (4.5j 

*k(z)=- i ~GJ,+-Yij*&%VY> k--1,2... 

n=x 0 

The application of this method to an actual problem is given below. 

6, The union of the slartic apace with a rigid conicrl lnclu- 
rion. We consider the problem of the torsion of the elastic space with an incl~ion.In 
the form of a rigid thin cone (Fig, 1). We represent the tangential displacement in the 

form of a sum of displacements originating from the torsion of a homogeneous space and 
additional displacements induced by the presence of the cone 

% x lj?,yrs sin 26 -/- u 

where Y is the coustant angle of twist per unit length. Then the problem reduces to the 

solution of the problem considered in Sect. 3, for 

f (r) = 6r - 1/aTr” sin 2a 

Here 6 is the unknown angle of rotation of the cone. The value of this angle must be 

obtained from the condition of the vanishing of the moment of the shear stresses which 
act upon the cone. 

Applying the method developed above, we arrive at the following integral equation: 
00 

* (xj = 166e-Bi~i3nyRsin2ae-‘i3:- G(]~-~lj*(~)d~, 6<$ <oQ 
s 
0 

where the kernel G (CC) is defined by the equality (4.2) for m = 1. It is convenient to 
represent the solution of the latter equation in the form 

9 (zj = 64691 (zj - 15styR sin Zutpz (x) 

Here $1(z) and 92 (2) are the solutions of the equations 

$1 (x) - ,&-“z~ -JG(/ s-Y1)91(??)& 
0 

co 

$I% (s) = 5e- w _ 

s 
G(I~---~l)~zbA~y 

0 

respectively. The functions et (z) and #.% (z) can be expressed in the form of the series 
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*141 = i I/)k,l (x) ctg% 
k=o 

$2 (x) = $lh.,* (5) ctg2” a 
k=o 

The computation of the coefficients of these series has been performed according to the 
scheme of Sect. 4, for which the computer BESM-4 has been used. 

After determining the functions &(r) and $&) , the resulting moment applied to 
the cone is given by the formula I*) 

bf = 3nzR2~ sin2 01 
s 

[6&*X (z) - 15nyX sin2 a*2 (%)I e-“@ dz 

0 

The requirement M = 0 leads now to the desired relation between the angle 0 and the 
given twisting angle Y dc ICO . s a 

‘Ia 
\Cl2(4e- dx 

0 ii $1 (a~) e-'@dz 0 

k = 64 (15nR sin 2a)-1 

For the values of a which are close to Va n, we obtain a simple expression in the form 
of an expansion in powers of ctg% 

8 / yk = 1 + 0.3578 ctg2a + 0.0976 &@a + . . . 

Appendix. We give a short proof of formula (4.1). We start with the integral 
representation ( * ) 

P,” (cos a) P,” (- CDS 3) = (- q”-l 2mr @ + lM 
R Jfii 

x 

ccl 

sinzm ci sinnv 
s 

(t + l)"'*~Pv" (t) dt 

1 
(t - 1) llO+Vi t ( - WI3 2a)m+‘/* 

Substituting here the expansion 
(-i<Rev<O) 

(t + 1)‘/“” (t - cos 2u)-7-% 

(f - tpm = (1 + ctgz a)m+“* x 

k (m + %)k (t - ifk 

kl (t + 1)’ 
ctgsk a 

and integrating term by term, we obtain 

p”ln (cos a) pvrn (- e0.9 a) = (- I)“-1 2m’n’mV;” x 

00 
k trn + “/dk 

QD 
sin 2m a sin 3tv (1 + ctga CZ)~+‘/~ 2 (- 1) 

Pvm (t) (t - 1)’ dt 

It! 
&pk a 

s 
k=O 1 

(tz _ Q’/~“’ + ‘is Q + 1)” 

If for the computation of the integral in the right-hand side of this equality we make 
use of the known formulas of the theory of hypergeometric functions p]. then we obtain 
formula (4.1) for Y = -% f I’m . A particular case of this formula. corresponding to 

m = 0, has been given in [I]. 

*) This representation has been communicated to the author by N, N. Lebedev and I. P. 
Skal’skaia. 
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In conclusion the author expresses her deep gratitude to N. N. Lebedev and Ia. S, Ufliand 
for helpful suggestions and discussions. 
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Boundary value problems of the linear theory of viscoelasticity are solved using 
rational functions to approximate a function of the Poisson ratio. The problem 
of interpolation is solved for the class of rational fractions and the error of the 

approximation is estimated. 

1. Suppose that a sufficiently smooth function cp (0) of the real variable o is to be 
approximated on the interval a g o < b using another prescribed function, to a specified 
accuracy. The problem embraces that of interpolation, the latter consisting of finding 

the interpolation function fn (w) belonging to some class F and assuming, at the inter, 
polation nodes, i.e. at certain prescribed points 

wo, 01, 02.. . 1 ON 

of the segment [a, b] , the same values as the function cp (o),i. e. 

(1 .I) 

fjv @o) = ‘PO, fN @l) = ‘PI,. . . , fN@&J ‘cp (1.2) 
where 

(P,=(P (Q, n=O,i,... ,N (1.3) 

Depending on the class F , the interpolation problem may have an infinite number 

of solutions, or none. If polynomials of degree not greater than N are used to represent 
the function fN, then the interpolation problem has a unique solution. In this case the 
polynomials are called the interpolation polynomials. Sometimes the properties of the 
function 9, (0) are such that it is more convenient to write the functions fN (0) in the 
form of rational fractions M 

flv (0) = 2 P,&P, ) P, = 2 QiJ (1.4) 
i=o i=r 

where Pi and qi are constants. Obviously. the approximation (1.4) is more general than 
that employing the polynomials. 


